

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Menkhoff, Lukas; Rieth, Malte; Stöhr, Tobias

Article — Published Version The Dynamic Impact of FX Interventions on Financial Markets

The Review of Economics and Statistics

Provided in Cooperation with: German Institute for Economic Research (DIW Berlin)

Suggested Citation: Menkhoff, Lukas; Rieth, Malte; Stöhr, Tobias (2021) : The Dynamic Impact of FX Interventions on Financial Markets, The Review of Economics and Statistics, ISSN 1530-9142, MIT Press, Cambridge, MA, Vol. 103, Iss. 5, pp. 939-953, https://doi.org/10.1162/rest_a_00928, https://direct.mit.edu/rest/article/103/5/939/97637/The-Dynamic-Impact-of-FX-Interventions-on

This Version is available at: https://hdl.handle.net/10419/266492

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

This is the published version of the article "The Dynamic Impact of FX Interventions on Financial Markets. Lukas Menkhoff, Malte Rieth, Tobias Stöhr. In: The Review of Economics and Statistics 103 (2021), 5, S. 939–953". available online at: https://doi.org/10.1162/rest_a_00928

THE DYNAMIC IMPACT OF FX INTERVENTIONS ON FINANCIAL MARKETS

Lukas Menkhoff, Malte Rieth, and Tobias Stöhr*

Abstract—Evidence on the effectiveness of foreign exchange (FX) interventions is either limited to short horizons or hampered by debatable identification. We address these limitations by identifying a structural vector autoregressive model for the daily frequency with an external instrument. Generally we find, for freely floating currencies, that FX intervention shocks significantly affect exchange rates and that this impact persists for months. The signaling channel dominates the portfolio channel. Moreover, interest rates tend to fall in response to sales of the domestic currency, whereas stock prices of large (exporting) firms increase after devaluation of the domestic currency.

I. Introduction

OREIGN exchange (FX) interventions are increasingly **I** prominent. Policymakers, especially those from the International Monetary Fund (IMF), are much more open to applying FX interventions as a policy tool than in the past (IMF, 2012; Blanchard, Adler, & Carvalho Filho, 2015; Ghosh, Ostry, & Qureshi, 2017) without glamorizing it (Obstfeld, Ostry, & Qureshi, 2019). In line with this new appreciation of interventions, it has been documented that central banks all over the world see this instrument as an integral part of their tool kit and apply it accordingly (Neely, 2008; Mohanty & Berger, 2013; Frankel, 2016). The mainstream policy stance is complemented by a set of theoretical papers building on existing literature (such as Vitale, 2003). These show that FX interventions can have positive effects for the economies applying them (Gabaix & Maggiori, 2015; Hassan, Mertens, & Zhang, 2016; Fanelli & Straub, 2017; Basu et al., 2018; Chang, 2018; Cavallino, 2019).

In contrast to the rather homogeneous positions of policymakers and theorists, there is less progress on the empirical front. We take stock of this literature later on. In summary, the most convincing evidence about the effectiveness of FX interventions may be based on event studies. An attractive feature of this approach is the use of daily (Fatum and Hutchison, 2003; Fratzscher et al., 2019) or intra-daily data (Dominguez, 2003), which reduces the risk of reverse causality and confounding factors. However, event studies, by definition, provide evidence over shorter horizons, such as a few days. Moreover, they typically treat actual interven-

We thank participants at several seminars, in particular Lukas Boer, Dario Caldara, Rasmus Fatum, Georgios Georgiadis, Marek Jarocinski, Peter Karadi, Mathias Klein, Alexander Kriwoluzky, Christopher Neely, Mauricio Villamizar, Georg Weizsäcker, and two anonymous referees for very helpful comments. We also gratefully acknowledge financial support by the German Research Foundation (DFG, ME 1070/12 and stimulus by grant CRC 190).

A supplemental appendix is available online at https://doi.org/10.1162/ rest_a_00928. tions as the true policy shocks, while it is likely that actual interventions measure such shocks with error, for example, because communication accompanies the actual intervention.

Studies addressing the longer-term impact of interventions by using lower-frequency data (Blanchard et al., 2015) need to rely on tenuous assumptions (e.g., on instruments) and imprecise proxies of true intervention data. Studies improving on the estimation method are limited to quite specific country cases (Kearns & Rigobon, 2005). Thus, missing is an approach that at least partially overcomes the inherent tradeoffs by deriving longer-term predictions of the intervention impact based on daily data and a powerful estimation method.

Therefore, in this paper, we use structural vector autoregressions (SVAR) for the daily frequency identified with an external instrument to study the dynamic effects of FX interventions on financial markets. This methodology, also called a Proxy-SVAR, is developed in Stock and Watson (2012) and Mertens and Ravn (2013) and is new to the FX intervention literature. It preserves the attractive features of the event study design and of models for lower-frequency data but addresses some of their key limitations. First, it views the actual interventions as a noisy measure of latent intervention shocks. By accounting for several forms of measurement error, it reduces the attenuation bias present in estimates from models treating the actual interventions as a one-to-one mapping to the intervention shocks. Second, it allows quantifying the persistence of the effects of FX interventions, which is of key importance for macroeconomists and policymakers. Third, by relying on higher-frequency data, it reduces the risk of confounding factors, reverse causality, and mismeasurement of policy-induced changes in reserves plaguing identification strategies for lower-frequency data.

We study some of the most important currencies in the world economy: the Japanese yen, U.S. dollar, euro, and British pound. We select these currencies because they represent flexible exchange rate regimes (IIzetzki, Reinhart, & Rogoff, 2019), their markets are liquid, and intervention data are publicly available (or can be inferred from press reports for the euro). In particular, we focus on Japanese and U.S. interventions between 1991 and 2017 because these countries were relatively frequent intervenors, giving us a sufficient number of actual interventions to obtain reliable estimates. In order to examine the generalizability of results, we repeat the analysis for the euro area and the United Kingdom, while acknowledging that we have only a handful of interventions for these two cases in the sample.

Using daily data limits the setup of the SVAR to financial variables, but from a macroeconomic viewpoint, this is not problematic. Given the high number of time-series observations from the daily sampling frequency, we can include many lags of the endogenous variables and still estimate the

Received for publication June 5, 2019. Revision accepted for publication March 9, 2020. Editor: Olivier Coibion.

^{*}Menkhoff: Humboldt-University Berlin, and DIW Berlin; Rieth: DIW Berlin; Stöhr: Kiel Institute for the World Economy and DIW Berlin.

autoregressive part of the model reliably without running into the curse of dimensionality. This allows us to say something about the intervention impact at macroeconomically relevant horizons of several months or even quarters.

The crucial issue for the identification approach is the instrument. We propose using the intervention direction on the first day of an intervention sequence as a proxy for latent intervention shocks. The central assumption is that concurrent news about the economy does not affect the decision to start and the direction of a new sequence. This decision typically requires the coordination between the central bank and the treasury, the latter having the legal lead on intervention policy, and is determined based on developments occurring over days or even longer horizons. Moreover, in a regime of largely floating exchange rates, there is no clear and communicated policy on exchange rate stabilization, so the exact intervention days are largely exogenous at the daily frequency. Of course, interventions may be more or less probable, as Frankel (2019) argued, but they are not anticipated with any certainty. As interventions often occur in sequences, this argument holds in particular for the first day, or the first intervention during a day, but less so for subsequent interventions. We provide detailed evidence on this argument in section IIB and note that high-frequency studies reveal that most of an intervention's impact comes from the first intervention (Fischer & Zurlinden, 1999; Payne & Vitale, 2003), indicating that these surprise the market but less so subsequent interventions.

We have four main findings. First, a surprise purchase of foreign currency by Japanese or U.S. authorities depreciates the domestic currency significantly. For Japan, a 1 standard deviation intervention shock, corresponding to purchases of US\$1.7 billion leads to an immediate depreciation of about 0.2% relative to the U.S. dollar, pound, and euro. A comparison with previous findings (Kearns & Rigobon, 2005; Chen et al., 2012) and considering the same sample (shorter than our full sample) shows that our estimate is at the upper end of the available evidence, consistent with the argument that accounting for measurement error reduces the attenuation bias and leads to more precise estimates of the efficacy of FX interventions. Furthermore, the estimates reveal that intervention shocks explain up to 12% of yen fluctuations on average. They also contributed to prevent an appreciation of the yen during certain episodes, in particular when interventions reached a hitherto unseen frequency and level in 2003/2004 and following the massive Tohoku earthquake in 2011. In contrast, U.S. intervention shocks play only a minor role for the evolution of the U.S. dollar. At the same time, they are more effective. We attribute this greater efficacy of interventions to some extent to interest rates being less constrained by the zero lower bound in the United States during the sample, and the corresponding better functioning of the signaling channel, than in Japan, where policy rates approached 0 in the early 2000s.

Second, the effects of FX interventions are highly persistent. The shocks move exchange rates significantly for up to four quarters in the case of Japan and for about one quarter in the United States.

Third, we aim for disentangling the total FX intervention impact into its two main components: the portfolio channel and the signaling channel. We implement two estimation approaches that consistently suggest that for Japan, the signaling channel dominates the portfolio channel with a share of about two-thirds to one-third of the overall impact; moreover, the signaling effect is much more persistent.

Fourth, we provide novel evidence on the dynamic impact of interventions on other asset prices. We find that interest rates tend to fall in both countries, whereas the surprise depreciation has significant and heterogeneous effects on stock prices of large versus small firms. Stock prices of the former (rather, exporters) increase, while those of the latter (rather, domestically oriented firms) decrease or remain unaffected. Finally, for the euro area and the United Kingdom, we show that the currency depreciates significantly and persistently following exogenous interventions, as well.

A. Literature

Our study contributes to the literature about the effectiveness of FX interventions. One of the main challenges in this literature is the clean identification of an intervention impact in a macroenvironment where many forces interact. This seems easiest with high-frequency data, which is where we start the short overview.

High-frequency studies (Dominguez, 2003; Pasquariello, 2007; Melvin, Menkhoff, & Schmeling 2009) can largely rule out interference by influences other than interventions due to the extremely short time interval of observation. However, their disadvantage is exactly this short-term concept. Although studies such as Payne and Vitale (2003) use the conceptual term of a "permanent" price impact of interventions, this permanence refers to high-frequency data. They cannot say anything about the impact over many days, weeks, or longer. Still, these studies provide evidence of the effectiveness of interventions.

By comparison, event studies operate at lower frequencies. They typically use daily data and analyze horizons of days or a few weeks at most (Fatum & Hutchison, 2003; Fratzscher et al., 2019). Alternative approaches at this frequency include Kearns and Rigobon (2005), who exploit a policy change in Japan (and similarly in Australia), which is a country-specific event. Thus, this method cannot be generalized. Chen et al. (2012) use a Bayesian data interpolation method to infer intradaily intervention patterns from observable daily data as a way to improve identification. All of these approaches find that interventions are highly effective (see also Dominguez, Hashimoto, & Ito, 2012; Dominguez, Fatum, & Vacek, 2013). However, estimates may be more affected by confounding factors than in high-frequency studies employing intra-day data.

Another alternative approach is comparison to (self-constructed) counterfactuals. A prime example is Fischer and

Zurlinden (1999) who, using transactions by the Swiss central bank, find that only interventions have an impact on exchange rates, whereas transactions as fiscal agent (which are transparently classified as such to the market) do not move the exchange rate. To generalize such an approach, counterfactuals can either be created by time-series forecasts (which are highly unreliable; Rossi, 2013) or by matching approaches (Fatum & Hutchison, 2003).

In relation to these approaches that rely on higherfrequency data, conventional macro approaches seem to produce less reliable results. Still, there is new and innovative literature in this direction. Blanchard et al. (2015) analyze a cross-country panel with quarterly data, basically using the closeness of a country's reserves to an optimal level of reserves as an instrument for FX interventions. Daude, Yeyati, and Nagengast (2016) take a similar route with monthly data and use as an instrument the ratio of reserves to M2. Finally, Adler, Lisack, and Mano (2019) combine a set of instruments that are similar to the ones already mentioned. All studies find evidence for effective FX interventions, and due to the lower-frequency data, its impact seems to persist for months or longer. The problem with these approaches is the weakness of their instruments that may be plausible to some extent but tend to violate the exclusion restriction and cannot fully preclude reverse causality. Earlier papers in this direction include Dominguez and Frankel (1993), who use oral interventions as an instrument for actual interventions, which would not be convincing in today's environment where communication is part of the policy concept.

The remaining paper is organized in five more sections. Section II describes the specific VAR model we employ. Sections III and IV contain core and extended results for Japan, respectively. Section V documents the impact of intervention policy for the United States and contains a replication of the estimation procedures for the euro area and the United Kingdom. Section VI concludes.

II. The Proxy-SVAR Model

In this section, we first discuss the specification of the reduced-form model, before we outline how we construct an instrument for FX intervention shocks. We then show how we use the instrument to identify the structural model.

A. Reduced-Form Model

The VAR model,

$$y_t = c + \Pi(L)y_{t-1} + \Gamma x_t + u_t,$$
 (1)

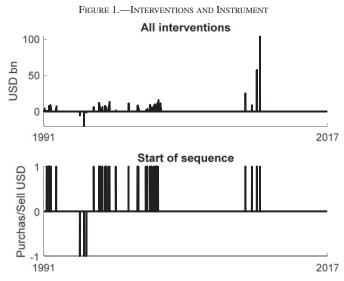
refers to variables at a daily frequency. The $k \times 1$ vector c includes constant terms, the $k \times l$ matrix Γ collects the contemporaneous impact of l exogenous variables contained in the vector x_t , the matrix $\Pi(L)$ in lag polynomials captures the autoregressive part of the model, and the vector u_t contains

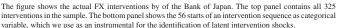
k serially uncorrelated innovations, or reduced-form shocks, with $V(u_t) = \Sigma$ and $u_t \sim N(0, \Sigma)$.

We employ different specifications for the endogenous variables in y_t . The baseline specification includes the two variables that are the focus of most of the previous literature: the size of the interventions and the nominal exchange rate. Specifically, we compute the cumulative daily interventions in million U.S. dollars over the full sample. We use the level of this variable as our policy indicator to scale the size of the policy shock and estimate its persistence. Moreover, we use the log of the bilateral nominal exchange rate of the intervening country to its reference currency. We define it as foreign currency to domestic currency, such that an increase in the exchange rate implies an appreciation of the domestic currency. In extended models, y_t includes the two baseline variables as well as additional variables, such as further bilateral exchange rates or interest rates and equity prices that change across specifications. Finally, to control for potential institutional or seasonal patterns, all models contain day-ofthe-week and monthly dummies in the vector of exogenous variables.

The VAR innovations are assumed to be linearly driven by an intervention policy shock ε_t^p that we aim to identify and other structural shocks ε_t^* that are of no interest for the purpose of this paper. The VAR innovations u_t are related to the structural shocks as

$$u_t = b^p \varepsilon_t^p + B^* \varepsilon_t^*. \tag{2}$$


The $k \times 1$ -vector b^p captures the impulse vector to an intervention shock of size 1 and is required to generate impulse responses to a 1 standard deviation shock. We use the identification approach with external instruments developed by Stock and Watson (2012) and Mertens and Ravn (2013); for a textbook treatment see Kilian and Lütkepohl (2017). When a variable s_t is available such that


$$E(s_t \varepsilon_t^p) \neq 0 \text{ and } E(s_t \varepsilon_t^*) = 0,$$
 (3)

it can be used to consistently estimate the impulse vector b^p . We now discuss how we compute s_t in order to ensure that the conditions in equation (3) are satisfied and then outline how we use it to estimate b^p and to identify ε_t^p .

B. Data and Instrument

Data. We use higher-frequency data (i.e., daily), as is common in the event study literature on FX interventions. The country samples depend on the data availability of the variables in y_t and the specific FX regimes of the country under consideration. In the following, we mainly refer to the case of Japan, which publishes its daily intervention data in million USD, deferring a discussion of the data and institutional settings for the other countries to section V. In the bivariate models for Japan, the sample starts on April 1, 1991, when official data on interventions become available, and

ends on January 4, 2017, for a total of 6,723 observations.¹ In some of the extended specifications, the sample starts later, as data for one of the additional variables are not previously available. The shortest sample starts on January 2, 1995, and contains 5,743 observations. Given the large number of observations, we include fifty lags of the endogenous variables, even though Akaike's information criterion indicates only between six and nineteen lags, depending on the specification. In this way, we carefully control for secular movements in exchange rates and reliably estimate the responses of the endogenous variables at long horizons, such as 100 trading days.

For the period covered, there are 325 intervention days in Japan. They are shown over time in the upper panel of figure 1 and summarized in table 1. Most are purchases of U.S. dollars. They cluster in the 1990s, but there are also interventions in the 2000s and 2010s. The average amount per intervention day is \$2.2 billion. The Bank of Japan typically intervenes in sequences of several days or even weeks, as the difference between the unconditional and conditional intervention probability shows.

It is known that interventions by the Bank of Japan were conducted consistently as sterilized interventions, except during the 2010s. Sterilization is important to avoid an immediate impact on the monetary base, thus on the money market and finally on short-term interest rates, which are the instruments of monetary policy. Without sterilization, one may argue that intervention policy is accompanied by a monetary policy im-

TABLE 1.—DESCRIPTIVE STA	ATISTICS FOR FX INTERVENTIONS BY JAPAN
--------------------------	--

	All Interventions	First Day of Sequence
Number of interventions		
Number of interventions	325	56
Purchases of foreign currency	319	53
Sales of foreign currency	6	3
Unconditional probability	0.05	0.01
Conditional on previous intervention	0.65	0
In billion U.S. dollars		
Average intervention	2.16	4.79
Average purchase	2.30	5.16
Average sale	-5.29	-1.80
Median intervention	0.80	1.21
Maximum purchase	103.53	103.53
Maximum sale	-20.32	-2.21

This table provides summary statistics for all interventions covered by our sample in the left column and for the first day of all intervention sequences in the right column.

pulse (going into the same direction) such that identification becomes unclear. While the publicly available data we use do not necessarily represent sterilized interventions, Japan (as well as the other countries in our study) uses the shortterm interest rate as its main instrument for monetary policy. Thus, the central bank has an interest in avoiding influences from FX interventions on their main instrument so that we can safely assume (in line with some qualitative information from news reports) that there is no unintended spillover. Moreover, most FX intervention volumes are small relative to money markets and do not require immediate sterilization. Still, we later explicitly control for monetary policy actions and also see in the SVAR estimations that FX interventions are not accompanied by contemporaneous interest rate changes. All this clearly indicates that we observe FX interventions that are distinct from monetary policy measures.

The procedure how decisions are made is, for example, illustrated in Ito and Yabu (2007). The central bank conducts the interventions but is not the responsible authority to make these decisions. That authority lies with the Ministry of Finance (MoF), as in other advanced economies. Receiving the permission for interventions is a costly process, which may be why they occur in sequences. Officials have to convince the top authorities, which is a discretionary process. Given this permission, follow-up interventions do not need individual consent.

Instrument. At the center of our identification strategy, we rely on the described fact that the decision to start such a sequence is usually not based on new information on the specific intervention day but is related to medium- and longer-term trends, as well as to general financial market and economic conditions. Hence, the first day of an intervention sequence can be considered as exogenous to contemporaneous exchange rates or other asset prices. By contrast, the subsequent decision after the first day of a new sequence and how long the sequence will last is taken on a day-by-day basis in response to current market conditions and the success of the initial intervention.

¹We obtained data on actual interventions for the United States and Japan from the data repository of the Federal Reserve Bank of St. Louis and for the United Kingdom from the website of the treasury, and constructed the data on euro intervention from Factiva news reports. Exchange rates are daily spot rates from Bloomberg (mnemonics BP0003M, EU0003M, TI0003M, and US0003M).

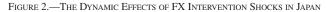
The largely exogenous character of the first intervention day is also apparent from intervention objectives of central banks. According to the survey of Mohanty and Berger (2013, table 2), the objectives are to smooth the trend path, limit pressure on exchange rates, and limit volatility, for example. These are all longer-term developments, so that the specific day of the intervention is not predetermined but is the discretionary decision of the responsible authority; hence, the intervention is not transparent to markets, similar to the surprise component of a monetary policy decision. This becomes clear when the policy process toward intervention is described, as it is assumed that the first intervention day is accompanied by effort to come to an intervention decision (yes or no) while later intervention days are then mainly covered by the first decision to intervene (Ito & Yabu, 2007). The longer-term basis for the first intervention decision is also reflected in event studies, such as that of Fatum and Hutchison (2003), who use averages over several days before the intervention as the basis to measure success. Finally, the most consistent empirical finding about intervention characteristics is that they "lean against the wind," that is, interventions are based on assessing the "longer-term" development of exchange rates, clearly reaching beyond one or a few days (Sarno & Taylor, 2001; Kearns & Rigobon, 2005; Fratzscher et al., 2019).

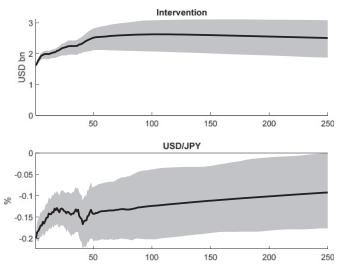
As the first day of an intervention sequence is exogenous and, in this respect, different from other intervention days, the impact of interventions should also differ along this margin. Indeed, it is known from high-frequency studies (intra-daily data) that the first intervention contains almost all of the information and consequently moves the exchange rate while later interventions have much less impact (Fischer & Zurlinden, 1999; Payne & Vitale, 2003). We hypothesize that this pattern also holds at a daily level.

Sequences. The number of such sequences in our sample depends on the criterion used to define the start of a new sequence. We use the number of days without intervention before an intervention day to define a new sequence. Using a shorter window implies a larger number of nonzero observations for the proxy, while at the same time risks including interventions that are the continuation of an earlier sequence and thus are potentially not fully exogenous. Therefore, we use a five-day window (one trading week) in the construction of our baseline proxy (as used in Fatum & Hutchison, 2003, or Fratzscher et al., 2019).

This window yields 56 nonzero observations for the instrument. They are summarized in the right column of table 1. The average intervention on the first day of a sequence is US\$4.8 billion, implying that the central bank typically intervenes more than twice as strongly on this day than on the following days of a sequence. This is in line with the idea that the decision to start a sequence is largely exogenous, while the decision to intervene subsequently is more likely to depend on the success of the initial day. In the sensitivity analysis, we show that our results are robust to using shorter windows and thereby increasing the number of noncensored instrument observations. Furthermore, the instrument contains both purchases and sales of foreign currency. Finally, we convert them into a categorical variable, shown in the bottom part of figure 1, containing values 1, 0, and -1 to further reduce endogeneity concerns. This transformation implies that only the decision to intervene on a particular day, but not the implied volume, which could potentially depend on the success of the first transactions within that day, is considered to be exogenous.

The proxy is not required to be a correct measure of intervention shocks because several forms of measurement error can be accounted for (see Mertens & Ravn, 2013). This is important in our case as actual interventions are often accompanied by oral intervention such as the communication of officials from the central bank or the Ministry of Finance (Fratzscher, 2008). The latter, however, are difficult, if not impossible, to perfectly measure as there are no official accounts of oral interventions. Moreover, central bankers discuss further features of actual interventions beyond incidence and volume, such as the instrument (for spot or derivatives, see Nedeljkovic & Saborowski, 2019). Consequently, models that treat the actual interventions as the true measure of interventions are likely to underestimate the effects of interventions due to the attenuation bias resulting from measurement error. In contrast, using an instrumental variable approach requires only that s_t correlates with ε_t^p to estimate the overall effect of interventions.


C. Identification of the Structural VAR


We now discuss how we use s_i for the identification of the structural VAR. The key step consists of estimating what we will refer to as the relative impulse vector. Call b_i^p the entry *i* of the $k \times 1$ impulse vector b^p from equation (2). We normalize the variance of the structural shocks to unity, so that b_i^p captures how variable *i* responds to a 1 standard deviation change in ε_i^p . The $k \times 1$ relative impulse vector is defined as $\tilde{b}^p = b^p/b_1^p = (1, b_2^p/b_1^p, \dots, b_k^p/b_1^p)'$ and captures the response of the last k - 1 variables relative to the first variable, which in our ordering is the policy indicator. \tilde{b}^p can be estimated as $(1, \beta_2/\beta_1, \dots, \beta_k/\beta_1)'$, with β_i the estimated coefficients in the regressions

$$\hat{u}_{it} = \alpha_i + \beta_i s_t + \nu_{it}, \quad i = 1, \dots, k, \tag{4}$$

with \hat{u}_{it} the estimated VAR residual corresponding to equation *i* of model (1).² The consistency of the estimate for \tilde{b}^p follows from the fact that $E(u_t s_t) = \gamma b^p$ with $\gamma = E(s_t \varepsilon_t^p)$, due to equations (2) and (3). As Mertens and Ravn (2013) outlined, once we have an estimate of \tilde{b}^p , we can combine it

²An alternative approach consists of regressing \hat{u}_{it} for i = 2, ..., k on \hat{u}_{1t} , instrumented with s_t (Mertens & Ravn, 2013). The two procedures deliver the same estimate for \tilde{b}^p already in a finite sample, as can be verified analytically.

The figure shows the response of cumulated interventions (in billion USD) and the USD/JPY exchange rate (in %) to an intervention shock of 1 standard deviation over a horizon of 250 trading days, along with 90% confidence bands from 200 bootstrap replications based on an SVAR(50) identified with an external instrument.

with the covariance restrictions $\Sigma = BB'$ with $B = [b^p, B^*]$ to estimate the impulse vector b^p .

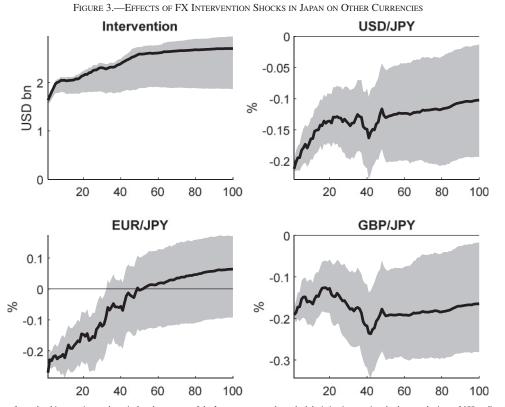
We use equation (4) to assess the relevance of our instrument. We compute the *F*-statistic for the null hypothesis $\beta_i = 0$, focusing on the first two equations of the VAR—those featuring the policy indicator and the USD/JPY exchange rate as the dependent variable. For the bivariate model, the *F*-statistics are 509.2 and 47.9. For the extended model including interest rates and stock prices, they are 540.5 and 75.8. These high *F*-statistics suggest that the instrument is strong.

III. Results

In this section, we present results for Japan. In sections IIIA and IIIB, we show estimates for a bivariate baseline model and an extended model containing further exchange rates to assess the effect of interventions on the currency value. In section IIIC, we extend the model by considering interest rates and stock prices, and in section IIIIV, we show variance decompositions.

A. Baseline Model

Figure 2 reports the impulse responses of the cumulative interventions and the USD/JPY exchange rate from the baseline bivariate VAR to an intervention shock of 1 standard deviation. The solid line refers to the point estimate and the shaded area to 90% confidence bands, which are based on bootstrap techniques.³ The top panel shows that a surprise intervention leads to an immediate and significant increase in the cumulated intervention series by US\$1.7 billion. The effect is highly significant and persistent. Cumulative purchases of foreign currency peak at roughly US\$2.5 billion after about fifty trading days, before slowly returning to trend.


The intervention is associated with a large and highly significant devaluation of the domestic currency. The USD/JPY exchange rate depreciates on impact by 0.2%. The impact is highly persistent as well. The exchange rate remains below the level where it would have been without the intervention shock over the full impulse horizon. Moreover, the impact is statistically significant for 250 trading days. The strong and long-lasting effects are consistent with the high persistence of the intervention. These results are qualitatively and quantitatively in line with existing evidence on the effect of FX intervention in the USD/JPY market, as we show in detail in section IVA. There we also highlight that our immediate impact is slightly larger than the one documented in two previous studies, which is consistent with the argument that the Proxy-SVAR approach removes a potential attenuation bias present in models treating the actual intervention volume as the true policy shock.

Looking also at other currency markets, the result on USD/JPY is qualitatively confirmed by evidence on the DEM/USD market, where Dominguez (2003) estimates the maximum impact of a US\$1 billion intervention to be 0.29%. In smaller (emerging) markets, however, the FX intervention impact is much larger, such as 1.8% on US\$100 million for the Australian dollar (Kearns & Rigobon, 2005) or 0.8% on US\$60 million for the Colombian peso (Kuersteiner, Phillips, & Villamizar-Villegas, 2018).

At the same time, our results reveal novel insights into the persistence of the effects. In high-frequency studies, the "permanent" effect lasts for hours (Payne & Vitale, 2003). The horizon of event studies is a little longer, although this depends on the exact success criterion chosen. If we refer, for example, to Fatum and Hutchison (2003), their direction criterion measures the impact during a postintervention period of two to fifteen days. In robustness exercises, they extend this period up to thirty days and find that the intervention effect becomes insignificant. There are only a few macrooriented studies, including Blanchard et al. (2015), Daude et al. (2016), and Adler et al. (2019), considering effects over several months. However, their approach differs from ours in three respects: first, they mainly cover emerging markets and, thus, predominantly not floating exchange rates; second, their measure of FX intervention is necessarily quite imprecise as they cannot rely on true intervention data but proxies derived from changes in official reserves; and, third, while their IV estimation is innovative in the field, the specific assumptions are at the same time debatable. Overall, according

³We apply a fixed-design wild bootstrap, as in Mertens and Ravn (2013) and Gertler and Karadi (2015). For each bootstrap we recursively generate pseudodata after randomly selecting a subset of days and then changing the sign of the estimated vectors of VAR innovations on those days. For

identification within each bootstrap, in correspondence to the same day, we change the sign of s_t . Within each bootstrap, we then apply the procedure discussed in section II. Confidence bands are constructed on 200 bootstrap replications.

The figure shows the responses of cumulated interventions and nominal exchange rates of the Japanese yen to a 1 standard deviation intervention shock over a horizon of 100 trading days, along with their 90% confidence bands from 200 bootstrap replications, based on an SVAR(50) identified with an external instrument.

to our knowledge, the implementation of a well-identified structural VAR is new to the literature on FX intervention. Thus, our empirical result of a "persistent" effect (lasting several months and up to quarters) has a previously unmet level of credibility.

B. Effects on Further Exchange Rates

While focusing on the direct impact of a Japanese intervention on the USD/JPY exchange rate, we extend this bivariate model also to two other important exchange rates relative to the yen, the euro (EUR/JPY) and the British pound (GBP/JPY). It is expected that the intervention in the USD/JPY market, intended to weaken the yen, will have an impact on the two other exchange rates in the same direction due to the interrelations on foreign exchange markets. Results are shown in figure 3.

The graphs on cumulated interventions and their impact on the USD/JPY remain largely the same, although the impact on the exchange rates is slightly weaker. The impacts on EUR/JPY and GBP/JPY mirror qualitatively those of the targeted U.S. dollar. The initial effects are similar for all three currencies. The most relevant difference compared to the bivariate model is that the impact on the EUR/JPY turns insignificant after about thirty to forty trading days; this may be partially caused by the fact that the USD/EUR rate is the most important exchange rate and dominates any impacts from the yen and respective interventions. Overall, these results support the impression of a significant impact of FX intervention on exchange rates.

C. Effects on Interest Rates and Stock Prices

The two models presented so far provide a first impression of interventions on exchange rates. We next extend the bivariate model, presented in section IIIA, by also considering four interest rates and two stock market indices: large and small firms listed on the Tokyo Stock Exchange.⁴ Specifically, to capture the differential stances of monetary policy, we consider the short-term (three months) interest rate differential between Japan and the United States. In addition, we consider the two-year, five-year, and ten-year risk-free interest rates in Japan.

The additional variables serve two purposes. First, we are interested in the asset market effects of FX intervention shocks per se, as these have received only scant attention in the literature. Movements in interest rates in response to the intervention shocks can give indications about changing

⁴We use the MSCI Japan Large (Small) Cap Index, which contains 139 (979) constituents and covers approximately 70% (14%) and of the free-float-adjusted market capitalization in Japan. We obtained both series from Bloomberg (mnemonics MXjplc index and MXjpsc index, respectively). The mnemonics for yield data from Bloomberg are GJGB3M Index, GJGB1 Index, GJGB2 Index, GJGB5 Index, and GJGB10 Index.

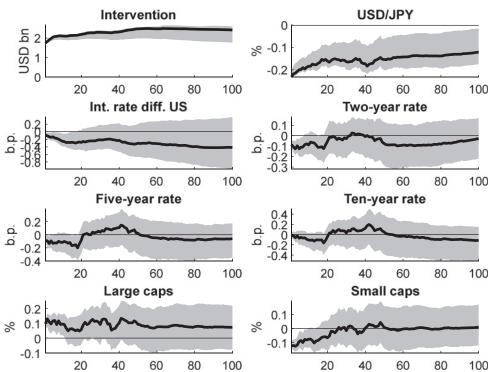


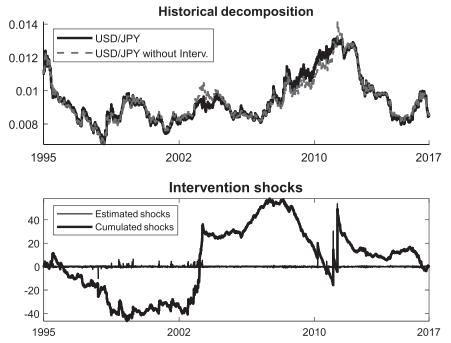
FIGURE 4.—RESPONSES OF INTEREST RATES AND STOCK PRICES TO JPY-INTERVENTION SHOCK

The figure shows the responses of different asset prices to an intervention shock of 1 standard deviation over a horizon of 100 trading days, along with their 90% confidence bands from 200 bootstrap replications based on an SVAR(50) identified with an external instrument.

expectations about inflation or future monetary policy of market participations, and stock prices may approximate risk appetite and future real growth of the domestic economy.

Second, a large model addresses potential concerns about omitted variables in the smaller models. To see whether the augmented structural VAR model is invertible, we follow Stock and Watson (2018) and test the null hypothesis that lags of the instrument are jointly equal to 0 in each of the VAR equations. We consider up to six lags. Results indicate that there is no statistically significant evidence against the hypothesis of invertibility (see table A1 in appendix A). This finding is consistent with the notion that exchange rates, interest rates, and equity prices summarize a potentially large set of information such that there are no omitted factors.

Figure 4 shows that the impact of FX intervention shocks on the USD/JPY in the larger model is qualitatively and quantitatively similar to the effects in the smaller models. Moreover, it reveals that the responses of interest rates tend to be first negative, but that they are often only marginally statistically significant. For the short-term interest rate differential, it is comforting that there is no instantaneous impact; this confirms that we indeed observe an FX intervention shock and not contemporaneous monetary policy effects. To reduce the risk of confounding monetary policy shocks further, we check for all 56 days with noncensored proxy observation whether there was a concurrent monetary policy event. We find only two such overlaps (March 8, 2000 and August 4, 2011) and excluding them leaves the results virtually unchanged. Turning to the longer-term interest rates, their reaction follows a similar pattern, being mostly insignificant except for a significant decrease of the two-year rate (by 0.1 basis points) for the first ten to twenty days. Otherwise, interest rates tend to fall by about 0.1 to 0.2 basis points during the first twenty days and then tend to rise for another twenty days, overshoot the starting level by about 0.1 to 0.2 basis points, and then move toward the level before the shock. An explanation might be that monetary policy tends to slightly support the intervention-intended weakening of the yen by loosening rather than tightening. While this may shortly spill over to the longer-term rates, potential effects of a yen depreciation on inflation and growth would induce higher interest rates before the overall limited effects level off.


The situation is different for stock prices. A depreciation of the yen improves the competitiveness of exports and may allow firms to increase associated profits. FX intervention can, however, affect firms differently, depending on how export oriented and competitive they are (for a model, see Verhoogen, 2008). Empirically, we find that large firms' stock prices are immediately positively affected by the intervention shock. They rise significantly by about 0.1% for ten days and keep their level thereafter. The depreciation increases the competitiveness of exports, which are more important for larger and more internationally oriented firms and thus supports their business. By contrast, the impact of the shock on the stock prices of small firms is negative by about 0.1% for ten days, before stock prices return to the preshock level. The

Horizon	Intervention	USD/JPY	Interest Rate Difference	Two-Year Rate	Five-Year Rate	Ten-Year Rate	Large Capitalization	Small Capitalization		
1	94.9	11.5	0.1	0.2	0.1	0.0	0.5	0.8		
5	92.2	10.3	0.1	0.3	0.1	0.0	0.7	0.7		
10	89.9	9.4	0.2	0.2	0.2	0.0	0.7	0.5		
50	82.2	6.4	0.3	0.1	0.1	0.1	0.6	0.2		
100	78.3	5.2	0.4	0.2	0.1	0.1	0.5	0.1		

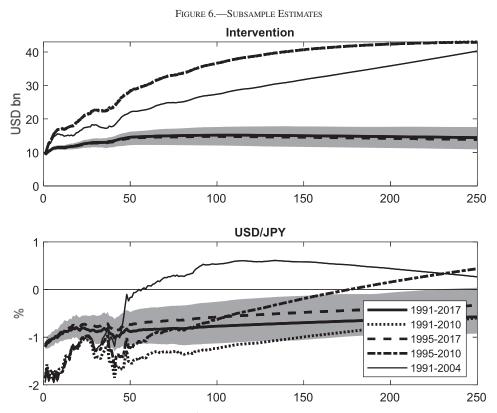
TABLE 2.—FORECAST ERROR VARIANCE DECOMPOSITION

This table shows, for the Japanese case, the contribution of the estimated intervention shocks to the forecast error variance of the respective time series (in percent) at horizons varying between 1 day and 100 days.

FIGURE 5.—HISTORICAL DECOMPOSITION OF USD/JPY EXCHANGE RATE AND ESTIMATED INTERVENTION SHOCKS

The upper panel shows the historical decomposition of the observed USD/JPY nominal exchange rate (solid line) and the exchange rate without the contribution of the intervention shocks (dashed line). The lower panel contains the estimated structural intervention shocks (thin line) and their cumulated version (thick line).

negative effect seems reasonable, as this more domestically oriented segment of the economy profits less from the depreciation boosting exports while at the same time incurring higher import costs.


D. Variance and Historical Decomposition

To quantify the average economic importance of FX interventions for exchange rate and other asset price fluctuations, table 2 documents the contribution of the estimated intervention shocks to the forecast error variance of the respective time series at various horizons.

The high explained variance in cumulated interventions is a rather mechanical effect as intervention shocks are the main driving force. The largest effect in asset prices is observed on the USD/JPY exchange rate. Here the explained variance starts at a remarkable 11.5% and decreases to 5.2% for longer horizons. This indicates that intervention shocks are relevant for understanding the USD/JPY exchange rate (although its influence on the exchange rate is not dominating). By contrast

all twenty effects on interest rates—regarding the four measures and five horizons—remain below 0.4% and are thus rather negligible. Finally, the explained variance of stock prices is larger than that of interest rates but still small. The share of explained variance is larger for large firms than for small firms and is between 0.5% and 0.7% over the horizons covered.

To assess the economic importance of intervention shocks during certain times in our sample, we compute a historical decomposition of the exchange rate. The top panel of figure 5 shows that the contribution of intervention shocks to the bilateral USD/JPY exchange rate is limited throughout most of the sample. There are, however, two noteworthy episodes where interventions curbed the appreciation of the yen: in 2003/04 when purchases of the U.S. dollar reached hitherto unseen frequency and levels under the newly appointed director general of the MoF's International Bureau, Hiroshi Watanabe, and in 2011 following the massive Tohoku earthquake and the ensuing tsunami hitting Japan's coast. This is reflected in the estimated intervention shocks in the bottom panel, which suggest that Japanese authorities massively

The figure shows the responses of the endogenous variables to an intervention shock of US\$9.35 billion, or JPY 1 trillion, over a horizon of 250 trading days based on an SVAR(50) identified with external instrument estimated over the full sample (solid line), along with 90% confidence bands, and the point estimates for different subsamples.

purchased foreign currency during these episodes to stem the appreciation of the domestic currency, consistent with the implicit aim of smoothing the exchange rate.

IV. Results in Perspective

In this section, we put our main results in perspective. First, we compare them with those of earlier papers by adjusting the sample period. Second, we compare our identification strategy to an alternative identification scheme; third, we provide evidence on the working and relative importance of transmission channels of FX interventions; fourth, we run robustness checks by using modified versions of the instrument addressing concerns that it is predictable; and, fifth, we provide a range of sensitivity analyses. Sections IVB, IVD, and IVE report only major results; the appendix contains all details.

A. Comparison with the Literature

In order to more exactly compare the intervention impact with those measured in other studies about USD/JPY interventions, we use the model from section IIIA, adjusting the observed sample period to align more closely to those of Kearns and Rigobon (2005) and Chen et al. (2012). In particular, we let the sample end in 2010, which removes the few huge interventions from 2011. In this way, we also assess the suitability of the assumption that the start of an intervention sequence is exogenous to the current economic environment. This condition is more likely to hold when the central bank is in the market frequently (as in the earlier part of the sample) than when it is intervening rarely, in which case, FX policy is more likely prompted by something concurrent. Moreover, we adjust the shock size to 1 trillion yen as in the mentioned papers.

Figure 6 contains the results. Relative to the full period, 1991 to 2017 (thick solid line with confidence bands), the intervention impact nearly doubles. It increases from about 1.2% to nearly 2% (dotted line). This impact is larger than the comparable impacts estimated by Kearns and Rigobon (1.49%) and Chen et al. (1.8%). As, for example, Kearns and Rigobon (2005) emphasize the policy change in June 1995, we also test whether a start of the analysis after this time has a major influence on our results. This is not the case, as can be seen from the dashed lines, and the immediate impact is the same as for our longer sample. Next, we combine both modifications of the sample and test whether a later start (in 1995) and an earlier end (in 2010) jointly affects the estimates. The dash-dotted line shows that the results are similar to those if we exclude only the later part of the sample. Finally, we shorten the sample further to investigate whether the policy change in 2004 toward fewer but larger interventions affects our results by ending the sample in 2004. Again, the impact in the shorter sample is larger than for the full sample (see the thin solid line).

B. Comparison to Identification via Timing Restriction

So far, the literature based on daily data usually relates some measure of the exchange rate to intervention volume. Often there is the additional assumption that the latter is exogenous. In a dynamic setting, this amounts to a Cholesky decomposition of the reduced-form covariance matrix of a model with the cumulated intervention sequence ordered first. Such a model means that FX interventions are assumed to contemporaneously have an impact on the exchange rate and the other asset prices in the model, but not the other way around, and that the actual intervention volume correctly measures the intervention shock.

Instead, if our argument holds that only the first day of an intervention sequence can be considered as exogenous and that intervention often contains elements of communication as well, we would expect that the Proxy-SVAR produces larger and more precise estimates of the efficacy of interventions. First, it does not consider subsequent interventions within a sequence as exogenous, which might introduce a bias toward 0 in the estimates if the central bank leans against the wind on a day-by-day basis. Second, it accounts for measurement error and does not treat the actual interventions as a one-to-one mapping to the structural shocks, thereby reducing a potential attenuation bias.

We find indeed that the Proxy-SVAR leads to the same qualitative results but larger impacts of FX intervention shocks (see appendix A for full results). If one is convinced by the superiority of the Proxy-SVAR, this method is crucial to obtain relatively large and persistent effects on exchange rates and stock prices.

C. Transmission Channels of FX Interventions

The literature dealing with the mechanisms by which FX interventions may affect exchange rates is dominated by two channels, the portfolio (balance) channel and the signaling channel (Sarno & Taylor, 2001). According to the portfolio channel, the intervention changes supply and demand for the respective currencies in the market, thus affecting the price (i.e., the exchange rate). According to the signaling channel, the intervention communicates further information than just the sale or purchase of foreign currency, which also affects the exchange rate. The portfolio channel is seen with increasing skepticism with respect to advanced markets due to their huge transaction volumes relative to the limited intervention amounts. The signaling channel has also met skepticism because it is not obvious what "further information" could be signaled. If this information was about monetary policy, then the intervention would be a communication tool for monetary policy rather than an independent instrument.

As the empirical validity of these channels is not fully clear-cut, the following two analyses aim to disentangle the portfolio channel from the signaling channel. First, we compare the Proxy-SVAR approach, which intends to capture all transmission channels, to a Cholesky ordering approach, as introduced above. As the latter basically relies on intervention volumes, the difference can be interpreted economically as being an approximation for the pure contribution from communication or, in the language of transmission channels, the Proxy-SVAR captures all channels, portfolio, and signaling while the Cholesky approach captures the portfolio channel only, such that the difference informs about the signaling channel. The second analysis, in order to identify transmission channels, addresses the issue of communication directly. Somewhat simplifying, we argue that by using communication around interventions, central banks clearly aim for a signaling channel. Thus, interventions without any communication may be secret but do not need to be; in any case, these interventions work through the portfolio channel but hardly exploit the signaling channel.

The difference between a Proxy SVAR and a Cholesky approach. We compare a model identified with a Cholesky decomposition to a Proxy-SVAR using our baseline instrument. In order to make both approaches as comparable as possible, we include the cumulated intervention volume on each first day of a sequence as our policy indicator. This is different from section IVB, which uses the cumulative volume of all interventions, including the volume on subsequent intervention days. The latter days entail the risk of containing endogenous responses to current market conditions, that is, to the success of the initial intervention. The Cholesky decomposition implies that we assume that the intervention volume on the first day of a sequence is exogenous and a one-to-one mapping to the intervention shock. This is meant to approximate the impact of the portfolio channel. Instead, the Proxy-SVAR allows for measurement error, and an interpretation of this error, that is, the difference between the actual intervention and the estimated latent shock, is the potential impact of communication. Hence, the difference between both approaches captures the signaling channel.

Results in figure 7 show that the qualitative patterns remain the same as shown in figure 4 for our baseline Proxy-SVAR and for the comparison between our baseline Proxy-SVAR and a standard recursive identification approach (in appendix A). Figure 7 suggests that the transmission of intervention shocks functions through both channels. For the purpose of comparison, we scale the shock in both cases to US\$1 billion. We conclude, following the suggested interpretation, that the portfolio channel accounts for about one-third of the overall effect. However, at about ten trading days, the impact is relatively short-lived. The signaling channel accounts for the remaining two-thirds of the overall effect and is much more persistent (for more than 100 trading days).

The difference between interventions with and without communication. In order to conduct the comparison between portfolio and signaling channels with a second approach, we need data about communication in the markets that is related to FX interventions. To this end, we create a database

949

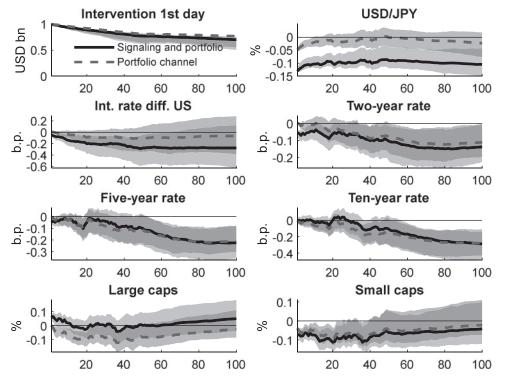


FIGURE 7.—TECHNICAL DECOMPOSITION OF TRANSMISSION CHANNELS

The figure shows the responses of different asset prices to an intervention shock of US\$1 billion over a horizon of 100 trading days based on an SVAR(50) identified with an external instrument (solid line) and based on an SVAR(50) identified recursively with the cumulated first-day interventions ordered first (dashed line), along with their 90% confidence bands. The Proxy-SVAR estimates contain both the signaling and the portfolio balance channel, while the recursive SVAR arguably approximates the impact of the portfolio channel only.

consisting of daily news items on Bloomberg and Factiva that cover foreign exchange intervention by central banks in our sample. To identify relevant news items, we designed a structured query involving terms such as *foreign exchange*, FX, and *intervention*.⁵ Based on each intervention day in our actual intervention data, we define a sampling period using a window of plus or minus 3 days around each intervention. Within these windows, we consider all news items that stem from the structured query. Overall, these raw data consist of thousands of news items.

To weed out news that is irrelevant to our research question, such as information about interventions in other countries or news about other policy interventions, we manually code each news item from the relevant time period following a systematic coding scheme. The core issue of interest to us is whether the market knew about an intervention. This can be the case if the central bank confirms an intervention or if it backs actual intervention up with oral intervention (e.g., making a statement like, "We are concerned about the dollar exchange rate and will intervene to avoid further appreciation of the yen"). Additionally, rumors reported by relevant players, such as statements by traders that the central bank was intervening in the market, are clear signs that market participants know about interventions taking place. Therefore, we also code these cases as days when intervention activity is known about. In addition, we coded whether the market was anticipating intervention. A respective statement would be, "Traders are worried about possible future BOJ intervention to strengthen dollar." The result of the coding effort is a time series that specifies for each day whether market participants knew about or expected an intervention taking place on that day. If the first intervention day of any intervention episode falls on such a day, then this is considered an FX intervention with communication. Of these, we have 12 cases in the sample; 29 cases are without communication.⁶

This is the necessary ingredient for our second approach, which aims at explicitly capturing the measurement error by considering communication. Thus, we compare two versions of a Proxy-SVAR using alternative subsets of noncensored instrument observations. The first set contains 29 days where we observe actual interventions without communication such that the identified shock will approximate the portfolio channel. The second set contains 12 days where actual interventions are accompanied by communication, meaning that the identified shock captures both channels. Hence, the

⁵The Factiva query is structured as follows: (foreign exchange or fx or forex or currenc*) and (intervene* or operation?) and (countrystub near10 interven*) and (rst=trtw or rst=tprw or rst=tdjw) and (central bank or ministry of finance or treasury ministry or monetary authority)," where countrystub is, for example, Japan*. Other settings: language=English, Region=respective country, all dates, all sources, all authors, and so on. On Bloomberg, which has less advanced search settings, we connect "foreign exchange" and country name with AND and the other parts of the Factiva query using OR.

⁶The number is reduced from 56 to 41 because some early-year data for the extended model are not available.

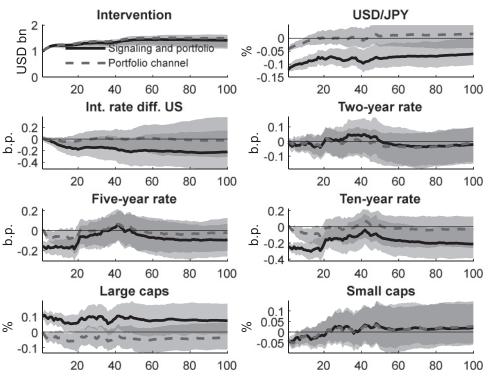


FIGURE 8.—NARRATIVE DECOMPOSITION OF TRANSMISSION CHANNELS

The figure shows the responses of different asset prices to an FX intervention shock of US\$1 billion over a horizon of 100 trading days based on an SVAR(50) identified with an external instrument, along with their 90% confidence bands. The solid line shows the results when the noncensored instrument observations contain both an actual intervention and communication, approximating the composite effect of the portfolio and the signaling channel. The dashed line shows the results when the noncensored instrument observations contain only an actual intervention, approximating the impact of the portfolio effect in isolation.

difference between the first and the second shocks can be interpreted as the signaling channel. We need to assume, however, that both time series are otherwise the same, implying that the use of communication is not dependent on specific circumstances. To back this assumption, we use the actual intervention volume on each first day of an intervention sequence, instead of the intervention direction used in the baseline model. In this way, we account for the potentially differing average volumes between the instrument sets.

Results are shown in figure 8. Reassuringly, the qualitative pattern of impulse responses resembles the earlier aggregate results. There is a remarkable difference, however, in the impact size between FX interventions with and without communication: the former seem to be about three times as strong as the latter, indicating, if one follows our arguments, that the signaling channel is twice as powerful as the portfolio channel. This confirms the results of our earlier approach in this section that were shown in figure 7 from another perspective.

D. Robustness Checks

In this section, we perform four analyses to see how the results are affected. First, we use a policy reaction function approach to clean the instrument. Second, we redefine intervention sequences using a stricter criterion. Third, we exclude coordinated interventions and, fourth, we perform a counterfactual analysis by purposely applying a "useless" instrument variable in our Proxy-SVAR approach—the second day of an

intervention episode (instead of the first day). The results in all cases support the robustness of our findings documented above. Details are documented in appendix B.

E. Further Sensitivity Analyses

In this section, we summarize the results from extensive sensitivity analyses. They demonstrate that our main results are robust. In detail, we exclude either the weekday or month dummies from the set of exogenous variables or include either a linear trend or year dummies. Furthermore, we use different numbers of lags of the endogenous variables. Then we modify the definition of an intervention sequence, use intervention size instead of the categorical variable, use shortened sample periods, and apply an alternative bootstrap methodology, proposed by Jentsch and Lunsford (2019). Full results are shown in appendix C.

V. Evidence for the United States, Euro Area, and United Kingdom

After showing that the identification and estimation methodology works well and produces reasonable estimates for Japan, we turn to an analysis of the United States, euro area, and the United Kingdom, both for their own sake and as tests of the external validity to alleviate concerns that the above results may be driven by unknown specifics of the Japanese case. All three countries have had floating exchange rates throughout the sample period, and results qualitatively support the analysis for Japan. For the sake of brevity, the detailed analyses are shown in appendix D.

VI. Conclusion

FX intervention is, in many respects, a macro issue. Despite being a common method in other areas of macroeconomic research, such as examining the impact of monetary policy, the literature on FX interventions hesitates to apply VAR approaches. The empirical problem is the partial endogeneity of FX interventions and the difficulty of measuring them precisely, as they are multidimensional policy actions. So how can we properly identify FX interventions and still obtain results that fit into macro-oriented research?

While some macro-oriented papers make major assumptions for identification, we remain closer to the convention of working with higher-frequency data and apply an approach that is new to the field of FX intervention: the external instrument VAR that combines a regular VAR with an event study identification strategy. The identifying assumption is based on the fact that FX interventions typically occur in sequences. Each first FX intervention then differs from subsequent ones because the first intervention is typically not driven by events on the specific day but by exchange rate developments over a longer period—in particular, in floating exchange rate regimes. This assumption is well documented in the intervention objectives of central banks and reflected in the empirical literature.

With this identification strategy, we set up the Proxy-SVAR, which has three appealing consequences: first, this method provides a more precise estimate of the impact of intervention shocks than conventional SVARs or other timeseries techniques that do not account for measurement error; second, by way of the SVAR, we can better assess the persistence of the effects than in event studies; and, third, by extending the SVAR to further asset prices beyond exchange rates, we obtain a fuller picture of its broader impact.

We apply this approach focusing on Japanese and U.S. data because both countries have a flexible exchange rate, are relevant markets, and there are many publicly known FX interventions. Our main findings are fourfold. First, interventions have a sizable impact on the exchange rate. For Japan, a US\$1.7 billion intervention has a contemporaneous impact on the USD/JPY of 0.2%. This shock is of similar size but somewhat higher than many previous estimates, fitting the expectation that the method we employ reduces the attenuation bias. For the United States, the impact of intervention shocks is larger. Second, the impact on the exchange rate remains significant for several months. Third, disentangling the intervention impact to channels, our evidence indicates that the signaling channel dominates the portfolio channel by a ratio of two to one and by being much more persistent. Fourth, interest rates tend to fall in response to the intervention shock, whereas stock prices of larger firms rise. Robustness checks show that these main findings hold in various settings and extensions. Moreover, applying the approach to a small set of euro area and U.K. FX interventions confirms their effectiveness for exchange rate stabilization.

REFERENCES

- Adler, Gustavo, Noemie Lisack, and Rui C. Mano, "Unveiling the Effects of FX Intervention: A Panel Approach," *Emerging Markets Review* 40 (2019), art. 100620. 10.1016/j.ememar.2019.100620
- Basu, Suman S., Atish R. Ghosh, Jonathan D. Ostry, and Pablo Winant, "Managing Capital Outflows with Limited Reserves," *IMF Economic Review* 66 (2018), 333–374. 10.1057/s41308-018-0055-7
- Blanchard, Olivier, Gustavo Adler, and Irineude Carvalho Filho, "Can FX Intervention Stem Exchange Rate Pressures from Global Capital Flow Shocks?," NBER working paper 21427 (2015). 10.3386/ w21427
- Cavallino, Paolo, "Capital Flows and Foreign Exchange Intervention," *American Economic Journal: Macroeconomics* 11 (2019), 127–170. 10.1257/mac.20160065
- Chang, Roberto, "Foreign Exchange Intervention Redux," NBER working paper 24463 (2018). 10.3386/w24463
- Chen, Chih-Nan, Tsutomu Watanabe, and Tomoyoshi Yabu, "A New Method for Identifying the Effects of Foreign Exchange Interventions," *Journal of Money, Credit and Banking* 44 (2012), 1508–1533. 10.1111/j.1538-4616.2012.00542.x
- Daude, Christian, Eduardo Levy Yeyati, and Arne Nagengast, "On the Effectiveness of Exchange Rate Intervention in Emerging Markets," *Journal of International Money and Finance* 64 (2016), 239–261. 10.1016/j.jimonfin.2016.01.004
- Dominguez, Kathryn M. E., "The Market Microstructure of Central Bank Intervention," *Journal of International Economics* 59 (2003), 25–45. 10.1016/S0022-1996(02)00091-0
- Dominguez, Kathryn M. E., Rasmus Fatum, and Pavel Vacek, "Do Sales of FX Reserves Lead to Currency Appreciation?," *Journal of Money*, *Credit and Banking* 45 (2013), 867–890. 10.2307/23463560
- Dominguez, Kathryn M. E., and Jeffrey A. Frankel, "Does FX Intervention Matter? The Portfolio Effect," *American Economic Review* 83 (1993), 1356–1369.
- Dominguez, Kathryn M. E., Yuko Hashimoto, and Takatoshi Ito, "International Reserves and the Global Financial Crisis," *Journal of International Economics* 88 (2012), 388–406. 10.1016/j.jinteco.2012 .03.003
- Fanelli, Sebastian, and Ludwig Straub, "A Theory of Foreign Exchange Interventions," MIT working paper (2017).
- Fatum, Rasmus, and Michael M. Hutchison, "Is Sterilized FX Intervention Effective after All? An Event Study Approach," *Economic Journal* 113 (2003), 390–411. 10.1111/1468-0297.00122
- Fischer, Andreas M., and Mathias Zurlinden, "Exchange Rate Effects of Central Bank Interventions: An Analysis of Transaction Prices," *Economic Journal* 109 (1999), 662–676. 10.1111/1468-0297 .00467
- Frankel, Jeffrey, "The Plaza Accord, 30 Years Later," in C. F. Bergsten and R. Green, eds., *Currency Policy Then and Now: 30th Anniver*sary of the Plaza Accord (Washington, DC: Peterson Institute for International Economics. 2016). 10.3386/w21813
- —— "Systematic Managed Floating," Open Economies Review 30 (2019), 255–295. 10.3386/w21813
- Fratzscher, Marcel, "Oral Interventions versus Actual Interventions in FX Markets: An Event-Study Approach," *Economic Journal* 118 (2008), 1079–1106. 10.1111/j.1468-0297.2008.02161.x
- Fratzscher, Marcel, Oliver Gloede, Lukas Menkhoff, Lucio Sarno, and Tobias Stöhr, "When Is Foreign Exchange Intervention Effective? Evidence from 33 Countries," *American Economic Journal: Macroeconomics* 11 (2019), 132–156.
- Gabaix, Xavier, and Matteo Maggiori, "International Liquidity and Exchange Rate Dynamics," *Quarterly Journal of Economics* 130 (2015), 1369–1420.
- Gertler, Mark, and Peter Karadi, "Monetary Policy Surprises, Credit Costs, and Economic Activity," *American Economic Journal: Macroeconomics* 7 (2015), 44–76. 10.1093/qje/qjv016
- Ghosh, Atish R., Jonathan D. Ostry, and Mahvash S. Qureshi, "Managing the Tide: How Do Emerging Markets Respond to Capital Flows?," IMF working paper 17/69 (2017). 10.5089/9781475589207.001

953

- Hassan, Tarek A., Thomas M. Mertens, and Tony Zhang, "Currency Manipulation," NBER working paper 22790 (2016).
- Ilzetzki, Ethan, Carmen M. Reinhart, and Kenneth S. Rogoff, "Exchange Arrangements Entering the 21st Century: Which Anchor Will Hold?," *Quarterly Journal of Economics* 134 (2019), 599–646. 10.3386/w23134
- International Monetary Fund (IMF), "The Liberalization and Management of Capital Flows: An Institutional View" (Washington, DC: International Monetary Fund, 2012).
- Ito, Takatoshi, and Tomoyoshi Yabu, "What Prompts Japan to Intervene in the Forex Market? A New Approach to a Reaction Function," *Journal of International Money and Finance* 26 (2007), 193–212. 10.1016/j.jimonfin.2006.12.001
- Jentsch, Carsten, and Kurt Lunsford, "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Comment," American Economic Review 109 (2019), 2655–2678. 10.1257/aer.20162011
- Kearns, Jonathan, and Roberto Rigobon, "Identifying the Efficacy of Central Bank Interventions: Evidence from Australia and Japan," *Journal of International Economics* 66 (2005), 31–48. 10.3386/w9062
- Kilian, Lutz, and Helmut Lütkepohl, Structural Vector Autoregressive Analysis (Cambridge: Cambridge University Press, 2017). 10.1017/ 9781108164818
- Kuersteiner, Guido M., David C. Phillips, and Mauricio Villamizar-Villegas, "Effective Sterilized Foreign Exchange Intervention? Evidence from a Rule-Based Policy," *Journal of International Economics* 113 (2018), 118–138. 10.1016/j.jinteco.2018.04.003
- Melvin, Michael, Lukas Menkhoff, and Maik Schmeling, "Exchange Rate Management in Emerging Economies: Intervention via an Electronic Limit Order Book," *Journal of International Economics* 79 (2009), 54–63.
- Mertens, Karel, and Morten O. Ravn, "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," *American Economic Review* 103 (2013), 1212–1247. 10.1257/aer.103.4.1212
- Mohanty, Madhusudan S., and Bat-el Berger, "Central Bank Views on FX Intervention" (pp. 55–74), in Bank for International Settlements,

Market Volatility and FX Interventions in EMEs: What Has Changed?, BIS paper 73 (2013).

- Nedeljkovic, Milan, and Christian Saborowski, "The Relative Effectiveness of Spot and Derivatives-Based Intervention," *Journal of Money*, *Credit and Banking* 51 (2019), 1455–1490.
- Neely, Christopher J., "Central Bank Authorities' Beliefs about FX Intervention," *Journal of International Money and Finance* 27 (2008), 1–25. 10.20955/wp.2006.045
- Obstfeld, Maurice, Jonathan D. Ostry, and Mahvash S. Qureshi, "A Tie That Binds: Revisiting the Trilemma in Emerging Market Economies," this REVIEW 101 (2019), 279–293.
- Pasquariello, Paolo, "Informative Trading or Just Costly Noise? An Analysis of Central Bank Interventions," *Journal of Financial Markets* 10 (2007), 107–143.
- Payne, Richard, and Paolo Vitale, "A Transaction Level Study of the Effects of Central Bank Intervention on Exchange Rates," *Journal of International Economics* 61 (2003), 331–352. 10.1016/S0022-1996(03) 00012-6
- Rossi, Barbara, "Exchange Rate Predictability," Journal of Economic Literature 51 (2013), 1063–1119. 10.1257/jel.51.4.1063
- Sarno, Lucio, and Mark P. Taylor, "Official Intervention in the FX Markets: Is It Effective and, If So, How Does It Work?," *Journal of Economic Literature* 34 (2001), 839–868. 10.1257/jel.39.3.839
- Stock, James H., and Mark W. Watson, "Disentangling the Channels of the 2007–2009 Recession," *Brookings Papers on Economic Activity* (Spring 2012), 81–135.
- "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," *Economic Journal* 128 (2018), 917–948. 10.3386/w24216
- Verhoogen, Eric A., "Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector," *Quarterly Journal of Economics* 123 (2008), 489–530.
- Vitale, Paolo, "Foreign Exchange Intervention: How to Signal Policy Objectives and Stabilise the Economy," *Journal of Monetary Eco*nomics 50 (2003), 841–870. 10.1016/S0304-3932(03)00039-4